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Abstract

Presence of joints and fractures in rocks strongly influences the behavior of the rock mass by dividing the

media into smaller unitsThese structures intensifhe potential instability besidethe development of
diding and rotational movementdhe assumption of discontinuumedia changes the whole analysis
conditionsin relation tothe continuumanalysis Acquisition ofgeometrial and structuratliscontinuitydata
alongside their mechanical propertissof paramount importance ia rock massanalysis Orientation,
spacing, expansigorand othergeometrial characteristics of the rock mass andirthrelative geometrical
positionto the studiedprojectsinfluence thepattern andotential of failure Therefore,inevitably, the first
stepinvolvedin the analysis of rock mass is geometric data collectidhe discontinuitiegs a crucial step
before analysisin this studythe traditionaldata collectiormethod in structural discontinuitiesvith their
disadvantages are reviewed. Thiw discontinuity data collection based on digital image analysis is
developed and applied in a case sttalgeveral walls othe Choghart iron ore minél'he resultobtained
show that this method hassery good accuracy in assessing the fine structaresalso it collects data in a
much shorter time.This study therefore,suggests thathe proposednethodcan be used as a practical

approach.

Keywords: Joint Mapping,Digital Image AnalysisChoghartlron Ore Mine.

1. Introduction

Rock masse usually contain defects and
geometrical discontinuities. This has no direct
relation to their inherent and primary properties.
These defects are generafigidings, foliations,
beddingplanes, cleavages, schistosity, joints, and
faults [1]. Joints and rflactures are often observed
in all rock environments especially in carbonated
or sedimentary rocks. Joints directly affebie
failure mechanism and conditions, fluid flow, etc.
in rock massrelatedprojects[2]. Therefore, joint
mapping is used to evaluatthe geological
structures and rock mass classifigat It is also
used for special purposes suchtls analytical
and numericalmodeling of rock mass stability,
rock mass deformation, fluid flow, blasting, rock
cutting, and spport system desigi3]. Nowadays
joint mapping is facing some basic problems
including dfficulties in discontinuity

measurementdow speedof mappingandlack of
accuracy especiallyin the traditional methods
and difficulties in true structure detection and
quantifcation [2]. Furthermoredifferent sources
of human errors, machine errprand other
complexities challengehe joint mapping [4].
Many efforts have been putn solving these
difficulties. Rossini has used the numerical
methods to detect discontinuities BD noise
corrupted functionsbased on the continuous
wavelet transform{5]. Lemu and Hadjigeorgiou
have presented a digital face mapping
methodology to constructhe discontinuity trace
maps from photographs of rock faces. For this
purpose, the edgebBave beendetected bythe
AiCanny o0 ,ahdtheadjacent pointhave
beenconnected to each other using dilation filters.
Thinning filters are being appliedand finally,
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joint sets are being detedtby theartificial neural
networkbased classificatiof6]. Leu and Chang
have investigated discontinuities in tunnel
excavation faces usindhe image processing
techniques in boththe spatial and frequency
domains[7]. Posthas applied various edge and
line detection algorithms to extradtscontinuity
characteristics from digital images. He applied
heuristics to detect fracture types and related
structuresand used geological iteria to specify
the discontinuity network [8]. Kemeny has
combinedthe hough transform and edge detection
algorithms for joint tracking from digital images
proposing a simple classification usinghe
detected traces angleg].[Wang et alhaveused
the image processing techniques along wille
support vector machine (SVM) to detect and
classify discontinuities. This algorithm takes
multiple images as inputand then with the help
of SVM classifiers, trained by many training
vectors, detectthe fractures and classifies them.
The fracturesretracked based otine multi-level
approach algorithm. They were reduced image
noise using lowesolution images, so gt thick
fractures had a chance to unfo[d(]. In another
study Nguyen et al. have analyzed facture
evolution from inclined flaws (cutsh a soft rock
using high resolution digital photographs and
Digital Image Correlation (DIC).They have
developed arextended DIC method that allows
automatic tracing of discontinuities and their
guantification in terms of the displament jumps
along thei length[11]. According to Assali et al.
the manual field survey method deficiencies can
be overcome usinghe dense 3D measurement
techniques such as terrestrial laser scanning and
optical imagingto obtain a more complete 3D
model and structural statement. Hence, they have
developed a semautomatic process that allows
3D models to be combined with the results of
field surveys in order to provide more precise
analyses of rock discontinuities. Thelyave
combined 3D data and 2D digital images as a
support forthe structural surveyl2]. In a recent
supplementary study, theyave proposed a
combined approach using both 3D point clouds
(from LIiDAR or image matching) and 2D digital
images, gathered intahe concept of "solid
image". This product ia connection between the
advantages of classical true color 2D digital
images, accessibility and interpretability, and
particular strengths of dense 3D point clouds, i.e.
geometrical completeness and accuradg].[
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Many other studies have beerarried outin
similar fields. However, itshould be noted that
there exists no commerciallgvailable thorough
and accurate techniquerieeasurall the required
structural data in discontinuity mapping
considering the limitations of time, cost, rigkc
The outcome of most of the studies in this field is
the noncommercial codes not available to others.
The purpose of thisvork wasthe accurate and
fast mapping of discontinuities in some walls o
the Choghart iron ore mine. Also the best
applicable technique in this field will be
developed in such a way to provittee required
data for development of stability analyses.

2. Traditional methods of

mapping

Usually there is no direct accessunderground in
primary stages of an engineering projedn.

general, atcrops are the main sourceof

engineering and gechnical characteristics of
rock masses in these stag§3]. Therefore,

discontinuity

statistical measurement of strual and
mechanical data frorthe outcropor other faces
becoming available through  underground

excavation phase should lsudied Applying
statistical techniques in processintpe data
acquired from the outcrops provides valuable
informationthathelpsin design stages to simulate
joints in an area.

The most conventional and applicable
discontinuity mappingnethodsare the scan line
and window sampling techniqugH4]. In thescan
line method (Figure 1 a), a clean and
approximately planar rock face is selected that is
large relative to the size and spacing of the
exposeddiscontinuities (roughly 10 to 20 times
the average spacing)Each scanline tape is
scanned, starting from the zero end, until a
discontinuity face is intersecte@nd then the
properties of those intersected discontinuities are
recorded3]. Window sampling provides an area
based sample of discontinuities exposed at a given
rock face. The window sampling technique is
essentially the same as the sdere sampling
except that althe discontinuities visible within a
defined area of the roclaée are measured, rather
than only those that intersect the stiaa (Figure

1 b) [15. The most important parameters of
discontinuities including dip, dip direction,
extension infilling materials and percentaged
infilling, roughness, and joint compressive
strengthare measured.
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Figure 1. Schematics of measuring structural parameters of discontinuitya) scanline method b) window
sampling [16].

Also an unconventional method of discontinuity 3. Image discontinuity mapping method
mapping isthe unparalleled boreholesne This Sampling difficulties, human biassafety risks,
method obtainghe density and characteristics of access to rock faces, time and cost limitatieta.
discontinuities usingthe least squares method are the most major drawbacks tbfe traditional
[16]. Furthermore in geophysical explorations, discontinuity mapping methodsin order to
thedi scontinuitiesd ge o meovercometheseshortcomingsthe color imagen g
properties of longitudinal waves in a tensor called processing algorithms haugeen combined with
discontinuity tensof17]. the discontinuity mapping principles. Applying
All these methodsequirecertain equipment and image  processing  significantly  increase
conditionsthat make data collection difficult and measuring speed and accuracy. Tk&ages
time-consuming. Many studies have been focused involved indeveloping this method aexplained
on fast discontinuity mapping therecent years. in the followingflowchart (Figure 3.

Preparing digital
image of outcrop

I
‘ Primary image smoothing ‘
I
‘ Image edge detection ‘

‘ Determination of joints trace line ‘

‘ Trace lines classification ‘
|
Description of structural
properties of joint sets

End

Figure 2. Flowchart of image discontinuity mapping method developed in this study

3.1.Preparing digital image of outcrop

The first stepinvolved in developingthe image should be marked with an ideal scaling tobhe
baseddiscontinuity mapping is to acquireigh- images with the least color difference arte
quality colorimages from the best outcrops of the same lighting must be selectédshould benoted
desired project.For a maximum efficiency at that dolique radiation of light canmprove the
least 8 Mpixel resolution and use of CCD techniques Figure 3is an example of images
(Charged Coupled Devie sensors are being taken in order to implement thitechnique ora
suggested in imaging. Moreoyéne camera angle typicaljointed outcropThe images areirned into
should beperpendicularto the outcrops strike gray scalein order to be prepare for the
Due tothe need to have@mension the outcrops histogramsmoothing procesgigure 3.
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Figure 3. A sample ofimagestak

3.2.Primary image smoothing

Image histogram describes the frequency of the
intensityvalues that occur in an imagehe image

is preliminary smodted after converting color
imageto grayscale In smoothing, the pixels of an
image are modifiedntensity of pixelswith lower
intensitythan the adjacemtixels isincreasegdand
some low-frequency intensities are neglected,
leading to a smootheimage histogram[1§].
Threetechniquesarebeing used in the smoothing
process histogram stretching histogram
equalizationand local Gama correctio2(]. The
idea behind histogram stretching is to increase the
dynamic range of the gray levels in the image
being processed.Thus histogram stretching
increass image contrast by specifyirtpe lower
and uper limits. Herevalues in lowhigh specify
the bottom 1% and top 1% of dfie pixel values.
Histogramequalization enhansdémage contrast.
This allows for areas of lower local contrast to
gain a higher contrasuppose a gray scale image
{x}, n; as gray level occurrenceTheprobability

of existence of a gray pixein the image is:

p.()=p(x 9 2,0 icL &)
n
where L isthe number of all gray levels in the
image (usually255), n is the number of all pixels
in the imageandp(i) is the histogram of coloi

amount in the image pixel inormalized interval

en for discontinuity mapping usingimage processing

; 3;

[0,1]. The cumulativedistribution function (CDF)
of pyis:

cdf,() =4 p.()

=1

)

cdf; is thenormalized cumulative histogram of the
image. The purpose dhe histogram smoothing
process is to produce a conversiorthia form of
y=T(x) to produce a new image {y} by flatted
histogram Figure 9.

The resulting image will have a linear cumulative
distribution. Therefore, for some constants K, the
following relationmay be deduced:
cdf, (i) =K (3)
cdfy is the normalized cumulative histogram of
the image. The conversion T maybe calculated
using Eqg. (4).

Acdf(i)- cdf,

T=
EeCdfmax - Cdfmin

(4)

T is a conversion that changes an input image
histogram to an output image histogrdd®].
Implementation of the stretching and equalization
smootler in an image used in this study is shown
in Figures 5 and 6.

-

Figure 4. Image histogram in smoothing process of light intensity19].
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Figure 5. Histogram smoothingprocessof an outcrop imagewith low-high stretching limits of 30 and 199,
respectively.

£

Figure 6. H istogram stretching smooting results of an outcrob imageith low-high strtching limits of 30 and
199 respectively.

Histogramequalization and stretching may not be
a suitable objective, where brightness of some
areas (or objects) of the image are satisfactory and
others are not[20]. Thus the local gamma
correction is being applied as the third
supplementary smoothing method. In Gamma
correction, on each pixel of the image that has a
norntinear effect on luminancee have:

g(u) = (5)

In the above equation f [0, 1] denotes the image
pixel intensity] is a positiveconstant introducing
the gamma valyeand "Q6 is the new pixel
intensity after correction.The goal of local
gamma correction is to estimate the gamma value
of an image in a local approach. The basic idea is
the fact thatthe homogeneity value in an irga

not suffering from gamma distortion has a lower
value (near to zero). These homogeneity values
can be calculated bthe gray level ceoccurrence
(GLCM) matrix, measuringthe probability that a
pixel of a particular gray level occurs at a
specified direion and a distance from its
neighboringpixels. Herethe homogeneity feature

is extractedusingGLCM, P, as follows:
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_®62ep(j,j,d,q)
Hom=g a 1+|i -j|

i=1j %

(6)

whereHomis the homogeneityij is the gray level

at the location with coordinate X,y), andj is the
gray level of itsneighboringpixel at adistanced

and a direction—from a location X,y). The
gamma value is then estimated by minimizing
these homogeneities in suofatrices of the image
based onZ(]. Implementation othelocal gamma
smoother in an image used in this study is shown
in Figure 7 It is clear that the dark areas have
become more clear.

Along with smoothing luminance intensity, the
image noise must be left out. One of the noise
removal purposes is to elindte the lines that are
diagnosed at a later stage due to surface
roughness. Here, linear, median, winner, and total
variation denoising filters were examined, and the
total variation denoising was selected. This is
based upon the principle that the signalith
excessive and possibly spurious details have high
total variation, i.e. the integral of the absolute
gradient of the signal is high. According to this
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principle, reducing the total variation in the signal
subject to it being a close match to thegimal
signal removes the unwanted detail, whilst
preserving the important details such as edges.

This noise removal technique has advantages over

the simple techniques such as linear, median, and
winner, which reduces noise but, at the same time,
smooths way the edges to a greater or lesser
degree. By contrast, the total variation denoising
is remarkably effective at simultaneously
preserving edges, whilst smoothing away noise in
flat regions, even at low signtd-noise ratios
[21]. Consider the 2D sigmaly such as images.
The total variation norm (V) in the isotropic
version is:

v=ayv. v . %
1]

The standard total variation denoising problem is
still of the form:

minE(x, y)+/V(y) (8)

y
where E isthe 2D inor m, N(@1) ¢ the
regularization parameter. There are many

algorithms that solve the variants of this problem.
A recent algorithm that solves this is known as the
primal dual method, fully discussed in [22].
Figure 8 shows this denoising in the proposed
image.

Flgure 8. Denmsmgan outcrop image uélngtotal variation filter with regulanzaﬂon parameter 0.2 and with
selectingPoissontype of noise

3.3.Image edgedetection

Edge detection refers to the process of identifying
and locatinghe sharp discontinuities in an image
[23, 24]. Edge detection is the next step after
image smoothingMost edge detection methods
may be grouped intathe two categories of
gradientbased and Laplacianbased edge
detectionones The gradient method detects the
edges by looking for the maximum and minimum
in the first derivative of the imagewhile the
Laplacian method searches for zero crossings in
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the second derivative of the imagefind edges.

Maximum Euclidean distanceRober t 6 s
operator Sobel operator,
operatoretc. are of the most important algorithms
of edge detectionBased on the results of this

study, the Canny edge detection algorithm

achievesthe best results in image discontinuity
mapping.

Canny algorithm basically detects edges with
maximum changes of gray intensitgiven a

c

CannyPr ewi t t 6

r
S
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signal of an edge in the imageith the jump edge in the original signal. Finding thes@xima
intensityshown in the diagram dfigure 9(a), its results inthe image edge detection. This method
derivative (in1D space wih respect to t) creates of locating an edge is charactéids of the
the diagram irFigure 9(b). Clearly, the derivative Afgradient filtero family ¢
shows a maximum located at the center of the
A E(t) A F(f)
| TN

YahN
| jd N

—— >
a t b t
Figure 9. Schematic of color variation signal in a) an edge and b) its gradiefi25].

Y

Canny algorithm does not directlyerivate the

imagebut uses convolution of some operatand G|=G? ] (10
images. Sobel operatas in Eq. 9), in thex and _ _ _ ) o
y directionsis used in this stud§25]. The edgeorientation (relative to the pixel grid) is
given byEqg. (11).
el 0 4 el 2 1
G=520 ¥G,=50 0 0 (9 g 46‘”'1{3%) (1D
e1 0 4 el 2 & It should be considered thadue to the regular

arrangement of phave éhé s , d

where Gx and Gy ardghe applied operators _ . .
y PP P ' following values 0° (positive horizontal), 45°

respectively in the x-axis and yaxis directions.

These operators can then be combined together to (POSitive diagonal), 90° (negative horizontaihd
find the absolute magnitude and orientation of the ~135° (negative diagonal). Other values should be

gradient at each point using E@0J. modified to these valugs) (Figure 10.

"““'S'R," ______
e L

a b

Figure 10. a) Candidate pixels for edge angle calculation bhodification of calculated angles to acceptable values

[23].

The gradient ofcandidate pixels for edgmight connected to this edge pixel and thasa value
not be locally maximum. These pixels are greater than Tis also selected asn edge pixel
compared to their neighbor pixels in gradient The valuesl;=0.5 and }=0.2 are selected in this
direction and if the gradient of the candidate study. Figure 11 shows the implementation of
pixels is lower than at least one of their neighbors, some of the most importanedgedetection
those candidate pixels are removed. Finally, the algorithms in the image used in this study.

hysteresis threshold algorithm takes two It should be noted that there is no concern about
thresholds, a high ;Tand a low . Any pixel in unrealistic boundaries such as rubbles, shadows,
the image that has a valugreater than ;Tis and tape line because they are removed during the

presumed to be an edge pixel, and is marked as clustering stage.
such immediately. Then any pixel thas
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5 b RV A = é N ?
Figure 11 Edge detectionoanout cr op i mage wusing a) Prewittods operat
operator, and d) Sobel operator

3.4.Determination of joint trace line
Because of the straight nature of rock joieidges points who M hohd . These points are
with straight lines should be separated from those transformed tsinusoidsn plane using Eq.1Q).
with curvilinear lines. TheHough transform .

algorithm is used for this purposlg]. This X Cosq Hy sin g )
algorithm can connedhe separate lineshat are

in one directionresulting in a trace line.

In general, any straight line can be represented as
a point in the Hough space. As illustrated in
Figure 12a, a straight line may be presented by
the angle of normal to the lind)(and the distance
from the origin of coordinate systei)(In image
space(x, y), a straight line may be presented by

If a series of points in a space lie on a straight
line, the corresponding lines in the plane
transform intersect in a pointhis point location

is equal tathe parametersf andy of that straight
line. Thereforginstead of finding a straight line in
image spacehe intersection points can be found
in the Houghspace Sincethe lines in an image
space are not exactly straiglite curves inthe

Eq. @2). parameter space do not intersect exactly at a

xcosq #sin g (12) single point. Therefore, Hough spaseridded as
shown inFigure 12(b). The measurements are

| f d —ihs, thé parameterobtained are done based on this grid. The accuracy of Hough

unique and each line ithex-y plane corresponds transform depends dthe cell dimensions shown
to a point inthe c-} plane. Consider a series of ~ PY ®@&ndey .

AV AL
~l 0000y

e L
1
1
1
1
P -Jpp—— Tp——— |
1
1
1
1
e Y J |
1
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>

—> X > A

a b
Figure 12 a) A straight line components, b) Gridding in Hough spac¢§l18].
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All the points detected as edge are mapped to
parameter spaceand using Eq.9), each point
corresponding curve is obtained in parameter
space.The cell value increases by orifea curve
pases through it After applying all curves, the
coordinates of the center of the cells with values
higher than a threshold are considered as

paraméers of a straight line inhe space image
plane[15]. The trace length characteristic (L) can
be calculatedisingthe distance of the determined
initial and final points.Figure 13illustratesthe
application of this algorithnto thedetected edges
by the Canny edge detection algorithm.

Figure 13 Implementation of Hdljgh‘transform algorithm i in edge detéétiom and presenting joint trace lines

3.5.Classification of trace lines

By determination of trace lineshe existing joint
sets in the image must be calculated.
Determination of clusters is an important step in
determining joint sets.Herg the subtractive
clusteringalgorithmis usedto determine clusters

It is a fast, ongass algorithnusedfor estimating
the number of clusters and the cluster centers in a
set of data.In this algorithm, all points are
considered as centgrand therthe density around
each poink; is calculateased on Eqld).

dxj :M for j = to number(n (14
rad
dens = a gl (15)

=1

rad; is the clustering radius in interval (0,1). The
valuefor densshowsthe density of points around
each point. The point withhe highest value is
selected as the first joint set centend this point
and all pointsincluded in the current set are
removed. The procedure is repeated until all
points are removed. Following thieethod,the
number of joint sets may be appropriately
determined. The conwergence radius increased
from 0.06 to 0.5 with 0.01 interval stef%e final
number of clusters is determined when the
number of clustersdoes notchange in three
consecutiveadii [26].

Fuzzy cemeans ECM) algorithm is used to
determinethe center and member of each cluster.
It is a method of clusterinthat allows one piece
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of data to belong to two or more clustefihe
purpose of thisalgorithm is to assign duzzy
partitioningto a group of characteristics in
cluster0 I8 R  with representaties

B HQ so that locally minimizes Eq16)
that measures the relation between the clusters
and groups of clusterfepresentatives

J:é é.(Uik) u(x,g) -

K=1li % (16)
a a |k é.x - gl )
K=1li %
whered is the degree of belonging of each

characteristic k in clusted , and? & RQ is the
Euclidean distance between a pair of characteristic
vectors.The parametem, whichis fuzzy partition
matrix exponent in( 1, D) i nt ethe al
degreeof fuzzinesf degree of belongingfor
characteristic KlIn this presentationthe degree of
belonging of each characteristio clusterP; is
constantandg; of P; cluster is updated using Eq.
(17) to minimize Eq. 16). When assigninghe
degree of belongingy, of each characteristicin
clusterP;is calculated using Eq18).

Figure 14 shows the implementation of this
algorithm in one of the images of rock masses in
wall of the Choghart iron ore mine.
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3.6. Description of structural properties of
joint sets

Trace lines and classification of joint sets were
detected following the presented computation
stagesNow some geometrical properties of joint
sets may be calculated. The current algorithm can
calculate orientation, extension, and spacing for
each joint et and linear density and overatick
massguality index.

The values foparametey are used to calculate
spacing. Sorting values ithe ascending order,
one can use the following relation to calcultte
distance of a joint from its neighbor joints.

S =1 .
§ =T T

wheres ands arethe spacing from theright and

left sides, respectively When there are multiple
joint sets, the average spacing for the whole rock
mass may be found using E80J.

1 01

S =

where§ is the average spacing for the whole rock
mass,n is the number of joint setsand S is the
average spacing of each joint s&he average
linear density of rock mass may be estimated
using Eq. 21).

(19

(20

d

3

whered,, is the linear density ofthe rock mass
and S is the average spacing of the rock mass.
Rock quality index RQD) may be extracted from

(21)

av
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-Figure 14. Clustering trace lines in four joint sets usihg FCM élgorithm

the digitized lines produced in the edge detection,
by defining ascan lineand measuring segments
longer than 1@m The presented technique in this
study allows determination of joint extensions as
well. A joint may be detected as several joints in
one direction. In order to avoid this problem,
firstly, the lines in one directin are determined,
and therthe sum of all line lengthis considered

as the joint extension.

The mathematicalrelations betweenthe 3D
properties of fractures (dip, dip directioand
dispersion coefficientand fractures trace in two
dimensions. It is assumed thatiscontinuity
orientatiors follow Fisher distribution. Therefore,
the joint sets are determined by average dip and
dip direction and Fisher coefficient based on an
approximate initialization fromthe traditional
mapping of some discontinuities. Knowirthe
orientation ofslope in the image, traces of these
joint sets in the outcropre determined based on
several geometrical relations. The resudse
compared to the results of recorded traces in
image processing. Mobjective function(Eg. 22)

is used to estimate orientations as an optimization
problem with more accuracy. Thebjective
functionis anerror function béweenaverage |f),
standard devian ({l), and biasd) of trace angles

of mapped joints and average, standard deviation,
and bias of calculated joints.

2

e(TT’ ';‘1 Té:A( TT_ |)|

(22
o 2 w 2«

B(G; - i+C(, &,) @
where index T denotdbe calculated data by the
program and index | stands fdahefractures trace
in the image.The influencecoefficiens A=0.7,
B=0.3, and C=0 were usedand the bias effect
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wasneglectedThe fiparticleswarm optimizatioa
(PSO)method is used to minimize this function.
This is a computational method that optimizes a
problem by iteratively trying to improve a
candidate solution with regard to a given measure
of quality. PSO optimizes a problem by having a
population of candidate solutions, hecdkibbed
particles, and moving these patrticles around in the
searchspace aaurding to simple mathematical
formulae over the particle position and velocity.
Each particle movement is influenced by its local
best known position but is also guided toward the
best known positions in the seargace, which
are updated as better posits found bythe other
particles. This is expected to move the swarm
toward the best solutions.

4. Method verification

The method developed in this study provides a
new technigue that can successfully increase the
speed and accuracy ofhe structural data

N

s

/ / / o

/ i A o
< 1640~2000%
S i >20.00 %

collection and analysis of related projects to rock
discontinuous environments. It has been tried in
the development of this technique to optimize the
method, especially in terms dhe orientation
information. The results of traditional
discontinuity mapping and image discontinuity
mapping are compared to evaluate the accuracy of
the resultsobtainedfrom this method Figure 15
shows this comparison for a zomdere one of

the imagesvaspreviously processed.

Also Table 1 demonstrates thmeatch error in
these discontinuity mapping methods.

In this work, it was tried to calculate the 3D joint
parameters based on 2D images. Thus the authors
think that these error values can be acceptable,
although they suggest that further efforts should
be made to increase accuracy.

Fisher
Concentration:
9% of total per 1.0 % area

0.00~ 200%
200~ 560%
560~ 920%
920~1280%

1280 ~ 16.40

s

Figure 15. Comparison of joint concentration curves and detected joint sets using a) traditional mapping and b)
image processing

Table 1 Match error of orientation parameters obtained bytraditional discontinuity mapping and image
processing

Error in matching (%)

Parameter
Dip (°) 6.56
Dip Direction (°) 5.14

Jointset 1 Jointset2 Average

5.62
1.54

6.09
3.34

5. Method implementation

The centralron ore ming[Choghart) is one of the
largest and oldest iron ore open pit minesran.

It is located in central IranThe mine is 13XKm
SE of Yazd, close to Bafghits pit has walls as
long as 500m. The stability of these walls has
always been a point of interest time design and
development stageBigure 16showsthe location

of thismine.

The image processing technique is applied to the
north walls of this mine to acquire the
discontinuitiy progrties for further stability
analyses. 15 digital images with appropriate
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quality were taken from -Bh scan lines in
different locations. The images were analyzed
separately using the image processing techniques
mentioned in the earlier sections. Figuresahd

18 show the statistical analysis of spacing and
persistency parameters in the images of one of the
zones in the walls, respectively. The complete
results obtained from the analyses of these images
are demonstrated in Table 2.

In these analysefRQD and linear density were
not measured.
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Figure 16 Central iron ore mine (Choghart) location.

46.0973, exp, mu=33.4507 8.6114, normal, mu=15.7617, sig=11.5949

0.038 T 0.09 m—
— b
0.03 a | 0.08 1
0.07 1
0025 1
0.06 1
= 002 1
z zoosp 1
2 2
o 0015 e & 004r 4
ool \ ] 0.03F / 1
002} 1
0.005 ™~ 1
k I I oo H_
0 0
0 20 40 60 80 100 120 140 160 180 200 0 10 20 30 40 50 60
cM M
947856, exp, mu=41.6223 167.7263, normal, mu=18 8947, sig=16.8159
0.03 : T 0.06 . - - - - - T T
c ] d
0.025 1 0.05

—
0.02 4 004k
=
0.015 B E 003F
5
N H
0.01 \ 1 002} /
0.005 1 001k

0 0
0 50 oM 100 150 0 10 20 30 40 50 60 70 80 90 100

Figure 17. Frequency density and statistical distribution match of spacing in joint seta) 1, b) 2, c) 3and d) 4.

Density

46.0973, normal, mu=31.712, sig=11.2201 8.6114, normal, mu=59.373, sig=15.8279
0.08 0.03
0.07 b
a 0.025 ===
0.06
0.02
0.05
T ogos 1 2 oo
a | a
0.03 1
/ 001 |
0.02 1 /
0.005 1
0.01 —l 4
0 (il
20 25 30 35 40 45 50 55 60 20 40 60 80 100 120 140 160
oM cm
1677263, normal, mu=52.8067, sig=34.1245 94.7855, normal, mu=36.2972, sig=16 5348
0.03 T T T : T T 0.045
—
C 0.04 d 1
0.025 1 1
0.035
0.02 1 0.03 1
= 0025 1
Z 0015 { 2 L~
4 & 002 / 4
001 |~ 4 0.015 4
0.01 1
0.005 4
0.008 1
0 - 0 -
20 40 60 80 100 120 140 180 180 2 3 40 50 60 70 80 90 100
M cm

Figure 18. Frequency density and statistical distribution match ofpersistencyin joint setsa) 1, b) 2, ¢) 3and d)
4.

72



Mohebbiet al./ Journal of Mining & EnvironmenY/ol.8, No1, 2017

Table 2 Results of discontinuity mapping using image processing of scéines in north wall of Choghart mine.

Image Joint _ Spacing (Cm) _ Continuity (Cm) Dip Dip
number set _Sta_tlstl(_:al Avera Star_1dr_—.1rd _Sta_tlstlgal Avera Stande_ard ©) Direction (°)
distribution ge deviation distribution ge deviation
1 Normal 16.16 12.24 Normal 58.2 34.7 45.53 174.16
2 Normal 25.78 17.16 Normal 28.5 20.4 67.34 203.78
! 3 Normal 317 * Log-normal 3.33 0.31 88.12 12.77
4 Normal 16.55 9.88 Normal 47.46 27.55 77.55 46.46
1 Log-normal 254 0.53 Log-normal 3.71 0.65 69.64 62.55
2 2 Exponential 25.7 * Log-normal 3.35 0.58 10.58 29.52
1 Log-normal 2.48 0.55 Log-normal 3.62 0.68 86.94 243.30
3 2 Log-normal 2.43 0.52 Normal 45.08 29.44 35.31 3.06
1 Log-normal 2.54 0.66 Log-normal 3.5 0.63 87.82 277.98
4 2 Log-normal 2.46 0.47 Normal 39.47 27.12 19.32 5.64
1 Log-normal 2.53 0.56 Log-normal 4.08 0.76 89.67 52.73
1 Log-normal 2.57 0.74 Normal 43.87 34.61 65.32 234.13
1 Log-normal 2.48 0.63 Log-normal 3.52 0.88 27.51 337.05
1 Log-normal 2.48 0.61 Log-normal 3.22 0.72 83.99 299.52
8 2 Log-normal 24 0.65 Exponential 48.18 * 28.41 358.97
1 Exponential 27.38 * Normal 41.48 21.03 79.67 246.71
2 Exponential 40.24 * Log-normal 22.2 10.5 15.79 305.74
9 3 Exponential 31.52 * Normal 37.02 15.93 10.83 358.91
4 Exponential 33.71 * Normal 36.86 18.67 61.89 223.57
5 Exponential 15.96 11.76 Log-normal 3.77 0.62 13.3 192.99
10 1 Log-normal 2.56 0.67 Log-normal 3.95 0.56 76.47 253.29
1 Exponential 29.29 * Normal 40.8 22.14 20.88 126.28
2 Log-normal 2.9 0.73 Normal 36.49 16.8 0 283.93
1 3 Exponential 28.33 * Normal 31.33 11.69 10 104.99
4 Exponential 25.34 * Normal 39 22.17 1.87 6.3
1 Log-normal 2.83 0.79 Log-normal 3.68 0.49 75.90 262.06
1 2 Log-normal 10.52 0.65 Log-normal 30.52 0.85 15.22 193.56
13 1 Log-normal 2.83 0.79 Log-normal 25.65 0.65 18.76 160.36
14 1 Log-normal 2.83 0.79 Log-normal 25.36 0.79 89.81 256.51
15 1 Log-normal 2.83 0.79 Log-normal 25.3 0.78 15.19 19.73

6. Conclusions

The image discontinuity mapping was used to
measurethe structural discontinuity data ahe
north wall of the Choghart iron ore mine. The
purpose of thisvork was to improve the accuracy
and speed of measuremewhile eliminatingthe
human and machine errofSor this, anumber of
algorithms were developed to estimale trace
line dataof joints by processing an input image of
the outcrop. This data was utilized to achieve
informationon a traditional discontinuity mapping
using the statistical techniques and some
mathematical assumptions.

The image processing technique was able to
correctly detectthe joint sets of outcrops. It
provided a detailedand accuratenformation on
spacing, orientation, extension, eite estimated
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statistical distributioa for spacing in most of the
outcropswere exponential and legormal. The
statisticaldistributions of continuitywere mostly
log-normal and normal. These findings are in
agreement with other studi€gd]. Comparison of
the traditional and imge processing results for
orientation showed a close agreement. This
agreement can be further increased. The
measurements in this studgn beused to analyze
the stability of discontinuous systemstine north
walls of the Choghartiron ore mine in further
studies. Therefore, due tdhe selection of
discontinuous analysis for this areand the
inability of the rock mass quality classification
systems in this type of analysis, thathors did
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not considerthe qualitative parametersuch as
RMR, RQD, etc.
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