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Abstract

This paper presents a quantitative modeling for delineating alteration zones

hypogene zone of the Miduk porphyry copper deposit (SE Iran) based on th
drilling data. The main goal of this work was to apply the Ordinary Kriging (C
Artificial Neural Networks (ANNSs), and Concentratitvolume (GV) fractal modelings
on Cu grades to separate different alteration zones. Anisotropy was investigat
modekd based on calculating the experimental seamiograms of Cu value, and the
the main variography directions were identified and evaluated. The block model
grade was generated using the kriging and ANN modelings followed Bgdagglots of
the GV fractal modeling to determine the Cu threshold values useéélineating the
alteration zones. Based on the correlation between the geological models and the
derived via GV fractal modeling, Cu values less than 0.479% resulting from Kri
modding had more overlapped voxels with the phyllic alteration zone by an ov
accuracy (OA) of 0.83The spatialcorrelation between the potassic alteration zone
3D geological model and the high concentration zonesaCtV fractal model showec
tha Cu values between 0.479% and 1.023%, resulting from kriging modbkughe

best overall accuracy (0.78). Finally, based on the correlation between classes
binary geological and fractal models of the hypogene zone, this research work ¢
thatkriging modeling could delineate the phyllic (with lower grades) and potassic
higher gradesalteration zonemore effectivelycompared withANNSs.

1. Introduction

The knowledge ofore grades, for example Cu
grade, isvital information and one of the most
complicated aspectsf both mineral exploration
and mining. On the other hand, ore grade
information is a foundation for ore grade control,
ore reserve evaluation, mine valuation, pit
optimization, and production scheduling [1, 2].
Multiple factors affect an ore grade model
including the conplexity and the spatial
continuity of the ore body, adequacy of the data to
monitor the spatial variability, andtypes of
techniquesised[3].

In the past few decadaemanyattempts have been
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made to achievareliable model of orgradesAt

the beginningthe conventional methods such as
core drilling combined with chemical analysis
would apply to achieve an ore grade model.
However, too much core drilling without
considering the spatial dependency is expensive
and time-consuming. Therefore, geostatistica
techniques were introducedvhich were based
upon spatial relationships between the sample
locations and the sample components in space.
Also the underlying assumption of geostatistics
(mean and covariance) is stationary4

The geostatistical metholbgy begins with two
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major steps: structural analysis and kriging. Over
the past 50 years, many researchers have used
various geostatistical methodsuch assimple
kriging, Ordinary Kriging (OK), lognormal
kriging, indicator kriging, cekriging, universal
kriging, residual kriging, moving window
regression residual kriging, disjunctive kriging
and stochastic simulation such &equential
Gaussian Simulation (SGS) and Sequential
Indicator Simulation(SIS) in ore grade modeling.
Kriging, as a group of geostatistical methods, is an
interpolation techniquehat considers both the
degree of variation and the distance between
known data pointsn estimating thevalues in
unknown areas [18].

Despite the widespread application  of
geostatisttal methods, they suffer from some
limitations. They are basegbon certain stationary
assumptiondike being a secondrder stationary
random field with an unknown constant mean as
well as using a linear correlation between any two
points in space and algpng thevariogram model
for representinga complex geological setting.
Furthermore, the algorithm requires abundant data
to be processedyhich restrictgheir learning and
efficient application. Other disadvantages of this
method include requiring deepmathematical
thinking and skills and taking too ueh time to

get the preferred solution [4, 14, 19].

Due to the aforementioned problems, many
researchworks have beenconductedto inspire
from nature. One of the methods inspired from
nature is computatioha intelligent methods
including neural networks (N$), evolutionary
computation (EC), swarm intelligence (Sl), and
fuzzy systems (FS) 2D-27]. An alternative
approach thahas beerconsidered particularly in
the last decade for grade estimation is the
applcation of Artificial Neural Network (ANNS)
systems. Neural networks have emerged as
powerful tools to model complex systems [28].
The NN analysis enables the estimation of ore
grades using various algorithms with sparse
analog data atheinput. Since th dataanalytical
approachesare carried out in parallel and
distributed methods in neural networks, their
ability to recognize the complex relationships
between multiple variables can be presented to
NN. In general, the purposes of ANIdpplied to
grade estimation include (& fast and reliable
grade estimation, (b) minimizing the required
assumptions on grade distribution, (c) minimizing
expert knowledge requirements, and (d) making
the quality of the estimates independé&nim the
skills and knowledge of thexpert[19, 29, 30].
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However, there are several probleg@ncerning

the efficiency of NNs that affecttheir
performance like the topology, weight, and
training parameters [31].

Identification  of geological units using

petragraphcal and mineralogical studies and
boreholedata is performed by applying different
conventional methods, which discretize different
populations bubre grades are not consideried

all of the resulting models. The relationship
between the geological variah and ore grades
leads to using another data processapgroach
like fractal geometryhatdescribes the complexity
in data distribution to find different geological
units[32, 33].

Natural phenomenalike gecrelated sciences
cannot be investigated thrgh Euclidean
geometry [34]. Mandelbrot (1983)as proposed
the fractal geometrywhich can explainnatural
processes [35]. Fractal/muftiactal modeling, as

a useful data processing method, can be applied
on geosciencedlike geochemical exploration,
mineral exploration, and economic geology -[36
46].

The complex spatial distribution of ore elements
has fractal dimensions, which shows a -self
similarity in different geographical scales.
Differences in some of the physical characteristics
in geological ad geochemical processes such as
vein density or orientation, lithology, fluid phase,
structural feature, alteration phenomenand
dominant mineralogy correspond to fractal
dimensions, so is possible to find the geological
populations andhe corresponthg spatial models.
Threshold values in fractal/mufiactal loglog
plots may be used tdiscriminate different
populationssuch asvarious types of alterations
and mineralized or barren zones [32, 41, 43, 47
55].

During the recent decades, various fahct
methods have been proposed in different branches
of geosciencesespecially geochemical pattern

recognition such as Numb8&ize [35],
Concentratiomdrea [38], SizeGrade [37],
ConcentratiorPerimeter [56], Spectrufrea
[57], ConcentratiofDistance [42]

ConcentratiofVolume [32], SpectrurRvolume
[58], ConcentratiotNumber [41] and Simulated
SizeNumber [59].

In this paper, we aigdto compare thabilities of
the ANNs and kriging methods foestimatingthe
block model of oregradesin orderto deternme
the best moddh isolating thesocieties under the
C-V fractal process, and finallyo give the best
alteration model in the hypogene zone of the
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Miduk mine. The efficacy of the modelwas
measuredin comparison with the geological
logging information and their performancevas
comparedvith each other.

This paperis organized awhatfollow. In the next
two sections, various aspects of regional geology,
geological settingand alteration zones of the
studiedareaare investigatedSection 4 givesan
overview of the methodsand their principles,
advantagesand limitations.The results obtained
are discussed inSection 5 Finally, the
conclusions are presentgdSection6.

2. Geological setting

Among the copper deposits, porphytgposits are
the world main copperresources thatsupply
threefourths of the worldcopper productiof60].
Various compositions and igneous rocks host
porphyry copper deposits (PCDs). Granodiorite,
guartz monzonite, quartz diorite, diorite,
monzonite, adesite and dacite are the most
important host rocks of PCD$hesediverse rock
types host different worldlass deposits like
Butte, Montana (Quartz monzonite), Cananea,
Mexico (granodiorite), Caspiche, Chile (diorite)
and Miduk, Iran (quartz diorite) [664].

Most PCDs in Iran occur in the Cenozoic
SahaneBazman orogenic beltF{gure 1), which
has beenintroduced by the subduction of the
Arabian plate under the central Iran during the
Alpine orogeny [6%7]. The mostimportant
copper deposits of Iran (e.g. Miduk, Sar
Cheshmehand Sungun) occur in this orogenic
belt in association with midto late-Miocene
diorite/granodiorite to quartmonzonite stocks
[20, 26, 6871].

The Miduk porphyry copper deposit is located in
the ShahiBabak area (Kerman province, Iran), 85
km NW of the SatCheshmeh PCD. The deposit
was explored in 1970s aftdre exploration of the
SarCheshmeh deposit. The Miduk deposit is
surrounded by intensely biotitized volcamacks
and is hosted by a cartz diorite stock [20, 72,
73].

3. Mineralization and alteration

Alteration, mineralization, and distribution of
veins in different world PCDs show similar
patterns [63, 7&6]. The typical alteration
zonation comprises the inner potassic alteration
(K-silicates),sericitic alteration (that may cut the
K-silicate zone), and the outer propylitic alteration
[77, 78]. Investigations on the MiduPCD show
that the alterations are formed in an alkali
metasomatic process, and include potassic,
transitional (potassiesodic), phyllic, and
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propylitic. The dominant alterations in the initial
hydrothermal procesare potassi@and propylitic,
followed by a later phyllic alteration [20, 26, 79,
80].

3.1. Potassic alteration zone

The mtassic alteration zone of the Miduk PCD is
the first intense alteration zone that is
characterized by potassic minerals likdefdspar,
Mg-enriched biotite, and anhydritehif zone was
formed during the alkali metasomatism developed
as halos surrounding the veins mostly in the deep
and central parts of the Miduk stock. There is a
close spatial relationship between the potassic
alteration and mineralization, imhich 70% of he
copper content was emplaced [20].

3.2. Propylitic alteration zone

Ubiquitous epidote, chlorite (x pyrite + calcite),
and plagioclase crystalare the main observed
minerals in this 40@neterwide alteration zone.
The propylitic alteration zone has a atebely
sharp border with #hpotassic alteration zone in
depth but the border iscut by the later phyllic
zone at shallow levels. Chloritization of biotite
crystals (primary and secondary) and groundmass
in the rocks around the central potassic zone
represent the propylitic alteration [20].

3.3. Sodic alteration zone

In the central part of the stock, the potassic zone
was overprinted by the pervasive sodic alteration
that changed peripherally into the phyllic
alteration. Albite rims on orthoclase, albite
replacement of Adamich plagioclase, and the
distinct white color of the alterewbcksare some

of the characteristics of this alteration [20].

3.4. Phyllic alteration zone

An increase in the muscovite proporticausesa
gradual change, which transits tlwliE alteration

to the phyllic alterationSeparatiorof the phyllic
and sodicalteration zoness not easydue to the
intense silicification caused lifie latter alteration
process. During this weak alteration, the reserve is
overprinted by alkali metasa@tic assemblages
and contains pyrite £ chalcopyrite £ quartz veins.
The replacement of roelorming silicates by
sericite and quartz is another characteristic of the
phyllic alteration [20].

3.5. Argillic alteration zone

In this alteration, theartial alteration of feldspar

to clay minerals occurs down to a depth of 20 m
and an assemblage of clay minerals, quartz, and
hematitereplacesthe entire rock. The dominant
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phyllosilicate mineral is kaolinite, which is
accompanied by illite [20].

3.6. Supergenenrichment

There are two different mineralized zonestlie
supergeneenrichment phase of the Miduk PCD
containing the leached oxidized and the supergene
sulfide zones. The leached capping layer, which
covers the supergene sulfide blankeg0 m thick

in average and contains limonite, copper
carbonates, andchalcanthite Moreover, the
supergene zone is several meters thick, and
principally contains chalcocite with a minor
amount of covellite [20].

3.7. Hypogene zone

Copper mineralization in the hypogenene of
the Miduk PCDseems to be introduced during the
transition from the potassic/sodic to the phyllic
alteration. The predominant occurrence of earlier
mineralization is in veins with sercitic halos in the
potassic zone, and the later mineralizationuogc
mainly as disseminations and veinlets. The main
copper mineralization during the potassic
alteration consists of chalcopyrite and minor
bornite, while the later phase of the hypogene
mineralization only includes chalcopyrite.
Sericitization and chloritation of feldspars and
biotite occur from the central part of the stock to
the margins, andreaccompanied by an d¢nease

in the sulfide content. From the richest hypogene
copper mineralization zone to the margins, the
ratio of pyrite to chalcopyrite vees from 3:1 to
13:1 [20].

4. Methods
4.1. Ordinary kriging (OK)
Over the past decades, different spatial

interpolation methods have been presented by
numerous researchers. However, most of them are
related together and have similar principles.
Spatial interpolation models can be categorized
into two classes: (a) mechieal/deterministic, and

(b) statistical/probability groupsihe mechanical
models are based upon empirical model
parameters, which include techniques like Inverse
Distance Weighting (IDW) and Splines. They do
not consider the error estimation. In contraise
parameters détatistical/probability techniques are
estimatedbasedon the probability principals and
consider the error estimation. One of the most
important statistical/probability models is kriging,
which is based on the
Var i abl es 0 [ 81, 82] .
introduced by Krige (1951) but in 1963, G.
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Matheron derived the formulas and founded the
linear geostatistics [83, 84]. The kriging

technique, which is commonly known as a
Omi ni mum var i aonsistsof ev®t i
basic steps. The first is an estimation of the semi
variogram using sample data, given by:

1 : 2
o(h) 2.n(h)ia;1 {z() z(i hy} 1)
whereg(h) is the estimate of seraariance, n(h) is
the number of pairs observed [z(i), z(i+h)], and h
is the distance betweehe pairs.
The second is predicting the value at unknown
spatial coordinates through a linear combination
of measured values shown by:

n
Z (%)=8 |z(x) @)
i=1
where z(xo) is the estimated value for any
location %, n is the number of measuredlue
z(i), z(x) is the value involved in the estimation,
and | ; is the weight attached to each measured
value z(i).
The best estimator is always unbiased and has a
minimum varianceTherefore the kriging system
can be deduced as:

.ar.l.l i* @(ivxj)

=

= nixtg) 3)

where g(x;, x,) is the semvariance function of

a vector with an origin at xi and extremity a X
o(x;,x;) is the sembariance function of a

vector with an origin atpand extremity at;xand
mis the Lagrangian multiplier [82].

OK is an appropriate geostatistical estimator and
the most useful technique amonlke different
kriging methods [4, 82, 85]. OK, as a linear
estimation method, assigns weights to the sample
locations inside the estimati neighborhood,
which are independent from the data values at
these locations. OK is a moving average method
satisfying the different types of data dispersion,
e.g. sparse sampling points [32,-88. The
technique minimizes the conditional bias and
estimation variance for each single estimate at
each location [13, 84, 89]. Most of the theories
about OK relies on the work of Georges Matheron
(1963), and hae beendeveloped by some others
of Regionali zed
Wa sis 3 jspagal
interpolation esthator E(XO) that is used to find

ma t
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the best linear unbiased estimate of a secoddr
stationary random field with an unknown constant
mean, as follows:

y n
f(xo) =a Lz(x) (4)

i=1

where E(xo)z kriging estimateat a norsampled

location %; Z(Xo) = sampled value at location; x
andl ; = weighting factor for Z(}.
The estimation error is:

Ex))- Z(x) R(x)) & Ax) Z(%)  (5)

whereZ(xo) = unknown true value apxand R(%)

= estimation error. For an unbiasestimator, the
mean of the estimation error must equal zero.
Therefore:

E{R(x0)} =0 (6)
And
g.H 4 (7)

i=1

A minimum variance of estimation error is
required for solving the interpolation problem by
kriging [85-87, 92, 93].

4.2. Artificial neural networks (ANNS)

A very powerful method that has attracted the
attention of the researchers over the past few
decades is ANNs, which Babeen used foore
grade modeling [31]. ANNs has a ntinear
mathematical structurthatis able to pdorm any
curvefitting operation in a multdimensional
space. Hencet is able to represent an arbitrarily
complex data generating a procdhat links the
inputs and outputs of that process [95].

In ore grade modeling/estimation, it is supposed
that tre attributedgrade value in an ore deposit
variesfrom one location to another, and this will
be reflected in a complex input and output spatial
relationship between grade values and spatial
coordinates in the area of interest. Therefore, the
output gradeis considered to be a function of
spatial coordinates like X, Y, and Z [96, 97].

There aremany artificial neural network types
such as feed forward neural network, Radial Basis
Function (RBF) network, and Kohonen
selforganizing network [98]. Three major
components are particularly important in every
ANN system: (a) structure of the nodes, (b)
topology of the network, and (c) the learning
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algorithm used to find the weights of the ANNSs.
On the other hand, in an ANN, each processing
unit actsas an idealiz#¢ neuron, receives input,
computes activation, and transmits that activation
to other processing units. A weight value, defined
to represent the connection strength, is associated
with each connection between these processing
units. The connection weightf @ach processing
unit is optimally determined through the
presentation of known examples, and application
of a learning rule. Once the connection weight is
determined through NN learning, the
inter-connection between input and output
embedded in the data captured [99].

An architecture of ANNs with a sigmoid
activation function is presented in Figure 2. It
contains an input layer, a hidden layer, and one
output layer, which are connected by modifiable
weights and represented by links between the
layers.Each input vector is presented as the input
layer, and the output of each input unit equals the
corresponding elements in the vector. Each hidden
unit computes the weighted sum of its input to
form its net activation [100]. The
abovementioned subjects an be expressed in
mathematical terms by Eq. (8):

d
X W 8)

i9

d
net =g xw

where the subscripts i and j are indexed units in
the input and hidden layers, respectively,; W
denotes the input to the hidden layer weights at
the hidden unit j, and negtis the activation for
hidden j.

Each hidden unit emits an output that is a
nontlinear function of its activation, f(net), in the
form of Eqg. (9):

y; =f(net) 9)

Each output unit similarly computes its net
activation based on the hiddanit signals as Eq.
(20):

nel =g yw, W, AYW (10)

=1 i®
where the subscript k indexes the units in the
output layer and jndenotes the number of hidden
units. An output unit computes the nlmear
function of its net, as Eq. (11):

z, =f(net,) (11)
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where z is the k output unitTherefore the total
network output for a threlayer model can be
calculated in the form of Eqg. (12) [96]:
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Input layer Hidden layer Output layer

Figure 2. Architecture of ANNs with sigmoid activation function.

4.3. Concentrationrvolume (C-V) fractal model normalized and the raw datsas utilized. The
The GV fractal modeling, which was first statistica]  geostatistical, and visualization
proposed by Afzal et al. (2011) for identification = operations wre conductedusing the Microsoft
of different mineralization zones in porphyry Cu Excelspreadsheet softwaamd Datamine studios.

deposits, can be generally expressefBak Experimentaksemivariogramsof Cu grade, as an
S - ) important tool for anisotropy investigatiomere
Vpe ) g® { z) Ve (13) calculatedor different directions with 10° vertical

Wher e V(i o g) and v ( 4ang ar increments,®5vertical angular toler%nce,

| Ctoh ¢ i * 30° ~hori ital an Lﬁag Gfg%rg hts, &nld ®15°

vol umes Wi concentrat iy donta® gHIaer olerante’ Th rﬁaﬁl’nsdirez:ti ngh o
equal to and greater than or equalthe contour resultingfrom variqgraphy are depicted Figure . .
ratues (o) andanand SEeidlalihe, IELAE G o1
exponents. e contour val ue h8 dzimuthof 155 rjnaf’or a%?h% formulas of

ex_plamg the boul‘grles that separate various spherical models fitted to the main directions are
mineralized (alteration) zones and concentration as follow:

populations. In thiswork, the OK and ANN

outputs (block model) were processedthg C-V & 0 h= 0
fractal methoda nd V() O g¢g) and V(Il; Oéso%)qg](k h e
volumes enclosed by a concentration contour) g(h)={c, @a%?aer 81 "% Po « a (14)
were calculated in a 3D space [32]. 1 c2ta +2 a¢ =+
f C, +C, h >a
5. Results and discussion ) 0 he o
5.1. Statistical parameters and spatial }e
variability analysis ) . 513(L) _}(1()3 0
Histogram and descriptive statistics of copper g(h)_}o'm 022%% 300/ 2\ 30 Q’OR & (15)
grades fom 21,710 borehole samples in the i 0.245 s 300
hypogene zone of the Miduk PCD are displayed in '
Figure 3. The copper grade (Cu%) as a )
regionalized variable has no trend in any [ 0 h= 10
direction; it means that the Cu grade does not f a3(n) 2/n\ &
have any correlation witsamplecoordinatesso g(h) =1 0.024 *0-22865(;2) ‘2(;) 0.0 % (1p)
it fulfills the first-order stationary assumption !
I 0.245 h> 342

(Figure4). The Gaussian kriging methedas not
used in thiswork. Consequentlythe datavasnot
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é 0 h= o0
as(n) 1fn) ©
g(n) :# 0.024 +o.22m—(—l) —(—) .o 3z (17)
7 ¢cz\si) 2\ad =+
f 0.245 h> 311

whereC, is the nugget constant, CgS the Sil|

and a is the variogram range.

The omnidirectional semiariogram of the copper
grade data follows a spherical model, which
reaches a sill of 0.213 (%ht a range of 389 m
with a nugget effect of 0.031 (%p)as shown in
Figure 5-a. Three maindirections of the search
ellipsoid were chosen from experimental
directional semiariograms of Cu to create the
best variographymodel for the ordinary kriging
estimation Figure 5-b). In order toevaluate the
accuracy of the variogram model, in a praces
called the crossalidation, eactone of the grade
values was estimated using the datiom the
neighborhood. The scatter diagram between the
actual and the estimated grades are represented in
Figure6.

5.2. Ok estimation

According to variography and thédetermined
evaluation parameters, the OK model was
generated on a 15 x 15 x 15%nyrid in the
hypogene zone of the Miduk PCD. There are
many advantages in 3D modeling of grade in an
ore deposit so that it leads to mordiaigle
evaluations and judgments about different parts of
the depositThe horizontal plans of an OK model
consisting of levels 1600, 1900, 2200, and 2500 m
are displayed in Figure 7.

5.3. ANN estimation

5.3.1. Data processing

The available data was classified into two
categories: (I) inputs (x,y,z) and (II) output (Cu
grade). Afterwards the datasetwas divided into
three sections including training (70%), validation
(15%), and testing (15%). The validatidataset
used in thiswork prevents the press from
overfitting and works likea criteria for early
stopping the training procesas the network
performance (for trainingfeduce The available
data was randomly selected to breakdown into the
determined datasets. Moreov#te available data
was scaled into [0 1] because it should be in a
suitable shape for NN traininddata processing
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and neural network modeling wereonducted
using MATLAB (R2014a).

5.3.2. MLP neural network

Trial-anderror is the most common way for
assessment of the optimal structure of MLP. In
this case, in order to find the optimal structure of
NN, the network parametessich as thenumber

of neurons in the hidden layer were changed, and
by substitution of the inputs, the final NN
structure was obtained. In other words, because
there is no tool to find the best values for NN
parameters, the only way is to run the different
networks for various conditions, and select the
best created ond& he resultsof this process are
shown in Table 1. The process wearried out
with LevenbergMarquardt (LM) as the training
algorithm and tansigas theoutput function of
neural network. Using the sigmoidal output
functions, the continuous graded response neurons
can be defied [31] (Tahmasebi and Hezarkhani,
2011).

After dividing the data into three sections
(training, validation, and testing), as mentioned in
t he ADat a processingo
dataset was used to test the network during the
training processn which the process would stop

if the training error increases.

After training the network, the testing procegss
conductedwith a completely independent data.
After building the networks with different
numbers of neurons, their MSE (Mean Square
Error) and Rvalues(correlation coefficient) were
collected to find the optimal structure (optimal
number of neurons). According to Table 12481

is the best network structure with the lowest MSE
(0.0027) and the maximum R (0.8&lues MLP
parametersuch as th@umber of neurons in the
hidden layer can lead the NN to be more
time-consuming and more complex. Also the lack
of data is another common problemhase
acquisition needs spending too much time and
money. As a result, this method can be utilized
under different conditiongo find the complex
relationship among the datasets.

By utilizing the created ANN, Cu values were
estimated for each block center onmax115 x 15
(m® grid. Horizontal plans of the OK model in
different levels (1600, 1900, 2200, and 2500 m)
are displayed in Figure 8.
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Figure 3. Histogram of the Cu data in hypogene zone of Miduk PCD.
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Figure 4. Variability of Cu concentration in (a) eastwest, (b) north-south, and (c)depth directionswithin
hypogene zone of Miduk PCD.
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Figure 5. (a) Experimental semivariogram (with appropriate fitted model) and (b) experimental directional
semivariograms (for 3 main directions of search ellipsoid) of the raw data in hypogene zone of Miduk PCD.
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Table 1. Results of MLP for several neurons in hidden layer with their correspnding MSE and R values.
Number of neurons in hidden layer MSE R

4 0.0038 0.76
6 0.0037 0.78
8 0.0036 0.77
12 0.0031 0.83
16 0.0028 0.84
20 0.0031 0.84
24 0.0027 0.85
30 0.0029 0.85

Table 2. Cu threshold values identifiedusing G-V fractal modeling for kriging and ANN results.
Estimation method First (%) Second (%) Third (%) Fourth (%)
kriging 0.479 1.023 1.514 1.905
ANN 0.871 2.089 3.548 4.467
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Figure 6. Crossvalidation diagram to evaluateaccuracy of variogram for kriging.

Figure 7. Horizontal plan of Cu concentration in different elevations (levels 1600, 1900, 2200, and 2500 m)
resulting from kriging modeling within hypogene zone.
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